تاريخ الأعداد الأولية
تشير بعض السجلات التاريخية القديمة إلى معرفة قدماء المصريين لمفهوم الأعداد الأولية ، مع ذلك يظل اليونانيون القدامى أول من أجرى دراسات جدية بشأنالأولية كما سنرى بعد قليل .ننننن
[عدل] خصائص الأعداد الأولية
جميع الأعداد الأولية – عدا 2 و 5 – تنتهي ب 1 ، 3 ، 7 أو 9 لماذا ؟
لأن جميع الأعداد التي تنتهي ب ( 0 ، 2 ، 4 ، 6 أو 8 ) هي من مضاعفات الاثنين فليست بالتأكيد أوليّة ، والأعداد التي تنتهي ب ( 0 أو 5 ) من مضاعفات الخمسة فليست أولية أيضاً .
إذا كان لدينا عددان صحيحان أ و ب ، ولدينا عدد ثالث ج ، حيث ج عدد أولي . وكان حاصل ضرب العددين ( أ × ب ) يقبل القسمة على العدد ج ، فإن "أ" أو "ب" يقبل القسمة على ج هذه الخاصية تعرف أيضا ً بمبرهنة إقليدس.
[عدل] اختبارات أولية العدد
هناك أكثر من 15 اختبارا لمعرفة هل عدد معين أولي أم لا وهي :
اختبار ليكاس – ليهمر
اختبار فيرما المتربط بمبرهنة فيرما الصغرى
[عدل] اختبار فيرما
مبرهنة فيرما الصغرى تبين أنه إذا كان p عدد أولي و a عدد أولي مع p, إذن :
عكس المبرهنة خاطئ, مثلا 561=3×11×17 ليس عدد أولي و مع ذلك بالنسبة لعدد a أولي مع 561, لدينا
لكن يمكن مع ذلك كتابة:
إذا كان p غير أولي فإن ap − 1 متوافق مع 1 بترديد p لقيمة ما a
الشيء الذي يمثل عكس احتمالي للمبرهنة.
برمجة التشفير PGP, تستعمل هذه الخاصية لمعرفة إذا كانت الأعداد العشوائية التي يختارها أعداد أولية. إذا كان: , فهذا يعني أن x عدد أولي احتمالي.
إذا أعطت إحدى المعادلات قيمة مخالفة ل1, في هذه الحالة x عدد غير أولي قطعيا.
[عدل] أهمية واستخدامات الأعداد الأولية
تستعمل الأعداد الأولية في ميدان المعلوميات و خاصة في علم التعمية. و من أشهر التطبيقات التي تستعمل الأعداد الأولية نجد نظام التشفير RSA. لمزيد من المعلومات راجع التشفير و مشكلة التفكيك إلى جداء عوامل أولية.